

a. Preamble

- a. Exams returned
 - a. Some of them very good
 - a. Outlines of issues handed out
 - a. Talk about today in discussion
- a. Second take-home
 - a. Shorter than the first
 - a. Due next week in class
 - a. Will be a third (handed out in two weeks.
- a. Lectures
 - a. Today: last day of ϕ of computation section
 - a. Talk about effectiveness, effective computability, and the official "theory of computation"
 - a. Next time: move to AI itself
 - a. Next week (change): connectionism & the rise of concepts
 - a. Handouts:
 - a. Smolensky: "Proper Treatment of Connectionism" (with replies)
 - a. Cussins: "The Connectionist Construction of Concepts"
- a. Teaser (to get juices flowing): what can be computed? (take a vote)
 - a. Functions
 - b. Numbers
 - c. Answers
 - c. North
 - d. Locomotives

a. Introduction

- a. Start with Turing machines themselves
- a. Basic idea (often imagined, but seldom seen)
 - a. Controller (finite state machine)
 - a. Tape
 - a. Set up an arrangement of marks on the machine, start it up, wait till it finishes, then read off the answer

- a. Properties
 - a. **Digital**: both tape and machine [← moral #1]
 - a. Internals:
 - a. On original conception: nothing was said (controller = machine)
 - a. Table: merely a representation of the controller, not internals
 - a. So: specificational view of table!
 - a. Now: tape is inside machine, not out (self-contained)
 - a. So self-contained, in Haugeland's sense
 - a. \Rightarrow **Formal** (Haugeland) [\leftarrow moral #2]
 - a. Formal in antisemantical sense (i.e., formal symbol manipulator)?
 - a. Depends on whether there is a semantics, to ignore
 - a. So look at that.

a. Representation

- a. First sentence of Turing's paper
- a. Everyone knows: marks on tape represent something
 - a. Paradigmatically, numbers
 - a. Sometimes, numbers that code up other things (other machine tables)
 - a. I.e., numeric representation of another tape's controller
- a. So: **intentional** [← moral #3]
- a. Digression on "compute"
 - a. Do you compute numbers or numerals?
 - a. Cf. "utter" and "describe"
 - a. "Compute" like the latter (for some people); like the former (for others).
 - a. Still odd to say that people are computable (though fine to say they are described)
 - a. Mystery.
- a. This suggests looking harder at those representations
 - a. Do this by proposing a series of odd machines (will do this several times during the lecture)
 - a. Theoretically possible, but metaphysically impossible?
 - a. \Rightarrow Something wrong with the theory.
 - a. Crazy case 1: base π
 - a. Some examples
 - a. 3.0 + 1.0 = 10.220122...
 - a. π² = 20
 - a. 10 = 3.01102111 ...
 - a. Point is that complexity results change
 - a. Crazy case 2: solve the halting problem

- a. Standard way problem is stated: compute o or 1, depending on whether another machine halts (given a certain input)
- a. Better: produce a representation of o, just in case another machine halts; else a representation of 1.
- a. Proposal: write down "o just in case machine m halts; else 1"
- a. Meets the definitions.
- a. What's going on?
 - a. Yes, tape is representational
 - a. But: there are restrictions on the representation relation
 - a. What restrictions?
 - a. Earman
 - a. They should be computable
 - a. \Rightarrow Circular
 - a. So: give up, do it on numbers
 - a. But that's a confusion, so reject it.
 - a. One-to-one
 - a. Leaves only a denumerable class of #s computable
 - a. Turing had a wider scheme
 - a. Conclusion
 - a. Must be simple
 - a. Must be different, depending on outcome
 - a. But if that includes referent, Crazy machine #2 was different
 - a. So: must lead to different behaviour
 - a. But: behaviour is different (under interpretation)
 - a. Better: must be causally discriminable
 - a. I.e., must lead to differnt effective outcomes.
 - a. Unary numerals: challenge antisemantical formality
 - a. Cf. Goodman's examplars
 - a. So, should look at effectiveness
 - a. But where do we stand?
 - a. TM's themselves illustrate all sorts of properties we've looked at
 - a. Theory of Turing machines abstracts away from these things
 - a. I.e., device ≠ quadruples
 - a. Theory of equivalence is entirely behaviourist (and therefore unsuited for a substantive theory of mind)
 - a. Wrt I/O, all issues are abstracted away
 - a. Context-dependence, etc.
 - a. Surgery on I/O
 - a. RFT stands on an intentional pillar, as yet unexplained.

a. Effectiveness

- a. More bizarre machines
 - a. A-historical
 - a. Move left if there has ever been ...
 - a. Move left if by doing that ...
 - a. Move to the square you started from ...
 - a. Coffee cup
 - a. Grue-like predicates
 - a. Travellon
 - a. Play with time:
 - a. Motorola 68030
 - a. Time backwards
 - a. Time \Rightarrow space (subway map)
 - a. Think of it as a representation
 - a. Curious!
- a. \Rightarrow Use of "space" and "time": mere metaphors?
- a. No! Effectiveness is physical effectiveness
- a. Second pillar!
 - a. \Rightarrow Draw picture.

a. Reconstruction

- a. RFT
 - a. Typically not analysed representationally at all: computable functions on numbers
 - a. In fact, however, stands on two pillars
 - a. \Rightarrow Effectiveness analysed under interpretation.
- a. Digression on effectiveness in general
 - a. Syntax: what is it to be a syntactic property?
 - a. I.e., antisemantical formality+, vs. antisemantical formality-.
 - a. \Rightarrow potency
 - a. Nothing but: effectively discriminable result
- a. Conclusion:
 - a. RFT is a study of effectiveness, analysed
 - a. Under interpretation? No (in spite of first appearances), because that would license too wide a range of interpretation relations
 - a. So: mathematically modelled
 - a. That's why the interpretation functions have to have the properties they do:
 - a. Effectively discriminable
 - a. Otherwise simple

- a. Essentially an isomorphism
- a. Conclusion: RFT is a branch of physics!
- a. So why not admitted?
 - a. Because analysed abstractly!
 - a. I.e., effectiveness conditions (formality+, and the theory of effective computability) are the projection into an abstract realm of the constraints of physical embodiment.
 - a. So: attempts to be dualist, but can't succeed.
- a. Picture
 - a. Summary
 - a. effectiveness is ~physical
 - a. effectiveness is ¬intentional
 - a. Theory of the flow of physical effect
 - a. Not an intentional subject matter

a. Embodiment

- a. But against all this: theory of these machines as independent of embodiment
 - a. abstract vs. physical: great advance
- a. Counter: so are tables & chairs
- a. \Rightarrow Digitality!

--end of file --